Q1.

Example 6 : Evaluate the determinant

$$
\begin{aligned}
&\left|\begin{array}{ccc}
1 & \omega & \omega^{2} \\
\omega & \omega^{2} & 1 \\
\omega^{2} & 1 & \omega
\end{array}\right| \quad \text { where } \omega \text { is a cube root of unity. } \\
& \text { Solution : }\left|\begin{array}{ccc}
1 & \omega & 2 \\
\omega & \omega^{2} & 1 \\
\omega^{2} & 1 & \omega
\end{array}\right| \\
& 1+\omega+\omega^{2} \\
&=\left|\begin{array}{ccc}
1+\omega+\omega^{2} & \omega & \omega^{2} \\
1+\omega+\omega^{2} & \omega^{2} & 1 \\
1+\omega+\omega^{2} & 1 & \omega
\end{array}\right| \quad\left(\mathrm{By} \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\right) \\
&=\left|\begin{array}{lll}
0 & \omega & \omega^{2} \\
0 & \omega^{2} & 1 \\
0 & 1 & \omega
\end{array}\right| \quad\left(\because 1+\omega+\omega^{2}=0\right) \\
&= 0\left[\because \mathrm{C}_{1} \text { consists of all zero entries }\right] .
\end{aligned}
$$

2. Using determinant, find the area of the triangle whose vertices are $(-3,5),(3,-6)$ and $(7,2)$.

$$
\Delta=\frac{1}{2} 1\left|\begin{array}{ccc}
-3 & 5 & 1 \\
3 & -6 & 1 \\
10 & 2 & 1
\end{array}\right|
$$

$=\frac{1}{2} 1\left|\begin{array}{ccc}-3 & 5 & 1 \\ 6 & -11 & 0 \\ 10 & -3 & 0\end{array}\right|$ (By applying $R_{2} \rightarrow R_{2}-R_{1}$ and $\left.R_{3} \rightarrow R_{3}-R_{1}\right)$
$\left.\left.=\frac{1}{2} 1 \right\rvert\,-18+110\right) \mid$
$=\frac{1}{2} \times 92=46$ square units
3. Use the principle of mathematical induction to show that $2+2^{2}+\ldots+2^{n}=2^{n+1}-2$ for every natural number n.

$$
\text { Solution : } \begin{aligned}
& \text { Let } P_{n} \text { denote the statement } \\
& 2+2^{2}+\ldots \ldots \ldots \ldots+2^{n}=2^{n+1}-2 \\
& \text { When } n=1, P_{n} \text { becomes } \\
& \\
& 2=2^{1+1}-2 \text { or } 2=4-2 \\
& \\
& \text { This shows that the result holds for } n=1 . \\
& \\
& \text { Assume that } P_{k} \text { is true for some } k \in \mathbb{N} . \\
& \\
& \text { That is, assume that } \\
& \\
& 2+2^{2}+\ldots \ldots \ldots .+2^{k}=2^{k+1}-2
\end{aligned}
$$

We shall now show that truth of P_{k} implies the truth of P_{k+1} is
$2+2^{2}+\ldots \ldots \ldots+2^{k}+2^{k+1}=2^{k+1}-2$
LHS of $(1)=2+2^{2}+\ldots \ldots \ldots+2^{k}+2^{k+1}$

$$
\begin{aligned}
& =\left(2^{k+1}-2\right)+2^{k+1} \\
& =2^{k+1}(1+1)-2 \\
& =2^{k+1} 2-2=2^{k+2}-2 \\
& =\text { RHS of }(1)
\end{aligned} \quad \text { [induction assumption] }
$$

This shows that the result holds for $n=k+1$; therefore, the truth of P_{k} implies the truth of P_{k+1} - The two steps required for a proof by mathematical induction have been completed, so our statement is true for each natural number n.

4. Find the sum of all integers between 100 and 1000 which are divisible by 9 .

Solution : The first integer greater than 100 and divisible by 9 is 108 and the integer just smaller than 1000 and divisible by 9 is 999 . Thus, we have to find the sum of the series.
$108+117+126+$ \qquad $+999$

Here $\mathrm{t}_{1}=a=108, d=9$ and $l=999$

Let n be the total number of terms in the series be n. Then
$999=108+9(n-1) \Rightarrow 111=12+(n-1) \Rightarrow n=100$
Hence, the required $\operatorname{sum}=\frac{n}{2}(a+l)=\frac{\mathbf{1 0 0}}{2}(108+999)$
$=50(1107)=55350$.
5. Check the continuity of the function $f(x)$ at $x=0$:

$$
f(x)= \begin{cases}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

(5)

$$
f(x)=\left\{\begin{array}{cc}
\frac{|x|}{x}, & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

Since $|x|=\left\{\begin{array}{cl}x & x>0 \\ -x, & x<0\end{array}\right.$

$$
\therefore f(x)=\left\{\begin{aligned}
1, & x>0 \\
-1, & x<0
\end{aligned}\right.
$$

So,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(1)=1 \text { and } \\
& \lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0}(-1=-1
\end{aligned}
$$

Hence f is not continows at $x=0$
6. If $\mathrm{y}=\frac{\ln \mathrm{x}}{\mathrm{x}}$, show that $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{2 \ln \mathrm{x}-3}{\mathrm{x}^{3}}$

$$
\begin{aligned}
& \text { (6) } \\
& y=\frac{\ln x}{x} \text { or } \frac{d y}{d x}=\ln x \cdot \frac{d}{d x}\left(\frac{1}{x}\right) \\
& \text { or } \frac{d y}{d x}=\ln x \cdot\left(-\frac{1}{x^{2}}\right)+\frac{1}{x} \cdot \frac{1}{x} \\
& =-\frac{1}{x^{2}} \cdot \ln x+\frac{1}{x^{2}} \\
& =\frac{1}{x^{2}} \cdot(1-\ln x) \\
& \text { Then } \\
& \text { end order denimptive } \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}} \frac{d}{d x}(1-\ln x)+(1-\ln x) \cdot\left(-\frac{2}{x^{3}}\right) \\
& =\frac{1}{x^{2}} \cdot\left(-\frac{1}{x}\right)-\frac{2}{x^{3}}(1-\ln x) \\
& =-\frac{1}{x^{3}}-\frac{2}{x^{3}}+\frac{2 \ln x}{x^{3}} \\
& =\frac{-1-2+2 \ln x}{x^{3}} \\
& \therefore \frac{d^{2} y}{d x^{2}}=-\frac{3+2 \ln x}{x^{3}}=\frac{2 \ln x-3}{x^{3}} \text { (cred) }
\end{aligned}
$$

7. If the mid-points of the consecutive sides of a quadrilateral are joined, then show (by using vectors) that they form a parallelogram.

Solution : Let $\vec{a}, \vec{b}, \vec{c} \vec{d}$ be the position vectors of the vertices A, B, C, D of the quadrilateral $A B C D$. Let P, Q, R, S be the mid-points of sides $A B$, $B C, C D, D A$ respectively. Then the position vectors of P, Q, R and S are $\frac{1}{2}(\vec{a}+\vec{b}), \frac{1}{2}(\vec{b}+\vec{c}), \frac{1}{2}(\vec{c}+\vec{d})$ and $\frac{1}{2}(\vec{d}+\vec{a})$ respectively.

Now, $\overrightarrow{P Q}=\overrightarrow{P Q}-\overrightarrow{P Q}=\frac{1}{2}(\vec{b}+\vec{c})-\frac{1}{2}(\vec{a}+\vec{b})=\frac{1}{2}(\vec{c}-\vec{a})$
or $\quad \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A} \quad(\because \overrightarrow{C A}=-\overrightarrow{A C})$
$\therefore \quad \overrightarrow{\mathrm{PQ}}=\overrightarrow{S R}$
$\Rightarrow \quad P Q=\mathrm{SR}$ and also $\mathrm{PQ} \| \mathrm{SR}$.
Since a pair of opposite sides are equal and parallel, therefore, PQRS is a parallelogram.
8. Find the scalar component of projection of the vector

$$
\rightarrow \mathrm{a}=\hat{2} \mathrm{i}+\hat{3} \mathrm{j}+\hat{5} \mathrm{k} \text { on the vector } \overrightarrow{\mathrm{b}}=\hat{2} \mathrm{i}-\hat{2} \mathrm{j}-\hat{\mathrm{k}} .
$$

Solution : Scalar projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
Here, $\vec{a} \cdot \vec{b}=2.2+3(-2)+5(-1)=-7$

$$
\text { and }|\vec{b}|=\sqrt{2^{2}+(-2)^{2}+(-1)^{2}}=3
$$

\therefore Scalar projection of \vec{a} on $\vec{b}=\frac{-7}{3}$
9. Solve the following system of linear equations using Cramer's rule: $\mathrm{x}+\mathrm{y}=\mathbf{0}, \mathrm{y}+\mathrm{z}=1, \mathrm{z}+\mathrm{x}=3$
(b) Here,

$$
\begin{array}{rlr}
\Delta & =\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right| & \\
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & -1 & 1
\end{array}\right| & \\
& =2 &
\end{array}
$$

Since $\Delta \neq 0, \therefore$ the given system has unique solution,

Now, $\Delta x=\left|\begin{array}{lll}0 & 1 & 0 \\ 1 & \mathbf{1} & \mathbf{1} \\ 3 & 0 & 1\end{array}\right|=2$

$$
\Delta y=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 3 & 1
\end{array}\right|=-2
$$

$$
\text { and } \Delta z=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 3
\end{array}\right|=4
$$

Hence by Cramer's Rule
$x=\frac{\Delta x}{\Delta}=\frac{2}{2}=1$
$y=\frac{\Delta y}{\Delta}=\frac{-2}{2}=-1$ and
$z=\frac{\Delta z}{\Delta}=\frac{4}{2}=2$
10. If $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$, Find a and b.
(4 Marks)
We have $(A+B)^{2}=(A+B)(A+B)$

$$
\begin{aligned}
& =(\mathrm{A}+\mathrm{B}) \mathrm{A}+(\mathrm{A}+\mathrm{B}) \mathrm{B} \quad \text { (Distributive Law) } \\
& =\mathrm{A} \mathrm{~A}+\mathrm{BA}+\mathrm{AB}+\mathrm{BB} \\
& =A^{2}+B A+A B+B^{2}
\end{aligned}
$$

Therefore, $(A+B)^{2}=A^{2}+B^{2}$

$$
\begin{aligned}
& \Rightarrow A^{2}+B A+A B+B^{2}=A^{2}+B^{2} \\
& \Rightarrow B A+A B=0 .
\end{aligned}
$$

Thus, we must find a and b such that $\mathrm{BA}+\mathrm{AB}=0$.
We have $\mathrm{BA}=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & -1\end{array}\right]=\left[\begin{array}{cc}a+2 & -a-1 \\ b-2 & -b+1\end{array}\right]$
and $\mathrm{AB}=\left[\begin{array}{cc}1 & -1 \\ 2 & -1\end{array}\right]\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]=\left[\begin{array}{cc}a-b & 2 \\ 2 a-b & 3\end{array}\right]$
Therefore,

$$
\begin{aligned}
\mathrm{BA}+\mathrm{AB} & =\left[\begin{array}{ll}
a+2 & -a-1 \\
b-2 & -b+1
\end{array}\right]+\left[\begin{array}{cc}
a-b & 2 \\
2 a-b & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 a-b+2 & -a+1 \\
2 a-2 & -b+4
\end{array}\right]
\end{aligned}
$$

But

$$
\mathrm{BA}+\mathrm{AB}=0
$$

$$
\begin{aligned}
& \Rightarrow 2 a-b+2=0,-a+1=0, \quad 2 a-2=0,-b+4=0 \\
& \Rightarrow a=1, b=4
\end{aligned}
$$

11. Reduce the matrix A (given below) to normal form and hence find its rank.
(4 Marks)

$$
A=\left[\begin{array}{rrr}
5 & 3 & 8 \\
0 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Solution : $A=\left[\begin{array}{rrr}5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$
Applying $R_{1} \leftrightarrow R_{3}$, we have
$A \sim\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & 1 \\ 5 & 3 & 8\end{array}\right]$
Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-5 \mathrm{R}_{1}$, we have
$A \sim\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 8 & 8\end{array}\right]$
Applying elementary row operations $R_{1} \rightarrow R_{1}+R_{2}$ and $R_{3} \rightarrow R_{3}-8 R_{2}$, we have
$A \sim\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
Now, we apply elementary column operation $C_{3} \rightarrow C_{3}-C_{2}$, to get $A \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$

Again, applying $C_{3} \rightarrow C_{3}-C_{1}$, we have
$A \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$

We have thus reduced A to normal form.
Also, note that the rank of a matrix remains unaltered under elementary operations.

Thus, rank of A in above example is 2 because rank of $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is 2 .
In this regard, we state following theorem without proof
Theorum : Every matrix of rank r is equivalent to the matrix $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$.
12. Show that $n(n+1)(2 n+1)$ is a multiple of 6 for every natural number n.

Solution : Let P_{n} denote the statement $n(n+1)(2 n+1)$ is a multiple of 6 .
When $n=1, P_{n}$ becomes $1(1+1)((2)(1)+1)=(1)(2)(3)=6$ is a multiple of 6 .
This shows that the result is true for $n=1$.

Assume that P_{k} is true for some $k \in \mathbf{N}$. That is assume that $k(k+1)(2 k+1)$ is a mutliple of 6 .
Let $\quad k(k+1)(2 k+1)=6 m$ for some $m \in \mathbf{N}$.
We now show that the truth of P_{k} implies the truth of P_{k+1}, where P_{k+1} is $(k+1)(k+2)[2(k+1)+1]=(k+1)(k+2)(2 k+3)$ is a multiple of 6.

We have

$$
\begin{aligned}
(k+ & +1)(k+2)(2 k+3) \\
& =(k+1)(k+2)[(2 k+1)+2] \\
& =(k+1)[k(2 k+1)+2(2 k+1)+4)] \\
& =(k+1)[k(2 k+1)+6(k+1)] \\
& =k(k+1)(2 k+1)+6(k+1)^{2} \\
& =6 m+6(k+1)^{2}=6\left[m+(k+1)^{2}\right]
\end{aligned}
$$

Thus $(k+1)(k+2)(2 k+3)$ is multiple of 6.

This shows that the result holds for $n=k+1$; therefore, the truth of P_{k} implies the truth of P_{k+1}. The two steps required for a proof by mathematical induction have been completed, so our statement is true for each natural number n.
13. Find the sum of an infinite G.P. whose first term is 28 and fourth term is $\frac{4}{49}$.

$$
\begin{align*}
& a=28, \quad a r^{3}=\frac{4}{49} \tag{4Marks}\\
& \Rightarrow r^{3}=\frac{4}{49} \times \frac{1}{28}=\frac{1}{7^{3}} \\
& \Rightarrow r=1 / 7
\end{align*}
$$

Thus, $s=\frac{a}{1-r}=\frac{28}{1-1 / 7}=\frac{28 \times 7}{6}=\frac{98}{3}$
14. Use De Moivre's theorem to find $(\sqrt{3}+i)^{3}$.

Solution: We first put $\sqrt{3}+i$ in the polar form.

$$
\begin{aligned}
& \quad \text { Let } \sqrt{3}+i=\mathrm{r}(\cos \theta+i \sin \theta) \\
& \Rightarrow \quad \sqrt{3}=r \cos \theta \text { and } 1=r \sin \theta \\
& \Rightarrow \quad(\sqrt{3})^{2}+1^{2}=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& \Rightarrow \quad r^{2}=4 \Rightarrow r=2 \\
& \text { Thus, } \sqrt{3}+i=2(\cos \theta+i \sin \theta) \\
& \Rightarrow \quad \sqrt{3}=2 \cos \theta \text { and } 1=2 \sin \theta \\
& \Rightarrow \quad 2 \cos \theta=\frac{\sqrt{3}}{2} \text { and } \sin \theta=\frac{1}{2} \\
& \Rightarrow \quad \theta=30^{\circ} . \\
& \text { Now, }(\sqrt{3}+i)^{3}=\left[2 \cos \left(30^{\circ}\right)+i \sin \left(30^{\circ}\right)\right]^{3} \\
& \left.=8\left[\cos \left(3 \times 30^{\circ}\right)+i \sin \left(3 \times 30^{\circ}\right)\right)\right][\text { De Moivre's theorem }] \\
& =8\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)=8(0+i) \\
& =8 i
\end{aligned}
$$

15. If $1, \omega, \omega^{2}$ are cube roots unity, show that $\left.\left.(2-\omega)\left(2-\omega^{2}\right)(2-\omega)^{10}\right)(2-\omega)^{11}\right)=49$.
(ii) Since $\omega^{10}=\left(\omega^{3}\right)^{3} \omega=\omega$
and $\omega^{11}=\left(\omega^{3}\right)^{3} \omega^{2}=\omega^{2}$,
Thus $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)$
$=(2-\omega)\left(2-\omega^{2}\right)(2-\omega)\left(2-\omega^{2}\right)$
$=\left[(2-\omega)\left(2-\omega^{2}\right)\right]^{2}$
$=\left[4-2 \omega-2 \omega^{2}+\omega^{3}\right]^{2}$
$=\left[4-2\left(\omega+\omega^{2}\right)+1\right]^{2}$
$=[4-2(-1)+1]^{2} \quad\left[\because \omega+\omega^{2}=-1\right]$
$=7^{2}=49$
16. Solve the equation $2 \times 3-15 \times 2+37 x-30=0$, given that the roots of the equation are in A.P.

Example $6=$ Solve the equation

$$
\begin{equation*}
2 x^{3}-15 x^{4}+37 x-30=0 \tag{1}
\end{equation*}
$$

If the roots of the equation are in A.P.
Solution = Recall three numbers in A.P. can be taken as $\alpha-\beta, \alpha, \alpha+\beta$.
If $\alpha-\beta, \alpha, \alpha+\beta$ are roots of (1), then $(\alpha-\beta)+\alpha+(\alpha+\beta)=15 / 2 \Rightarrow 3 \alpha=15 / 2$

$$
\Rightarrow a=5 / 2
$$

Next,
$\alpha(\alpha-\beta)+\alpha(\alpha+\beta)(\alpha-\beta)(\alpha+\beta)=37 / 2$
$\Rightarrow \alpha^{2}-\alpha \beta+\alpha^{2}+\alpha \beta+\alpha^{2}-\beta^{2}=37 / 2$
$\Rightarrow 3 \alpha^{2}-\beta^{2}=37 / 2$
$\Rightarrow \beta^{2}=3 \alpha^{2}-\frac{37}{2}=3 \times \frac{25}{4}-\frac{37}{2}=\frac{1}{4}$
$\Rightarrow \beta= \pm \frac{1}{2}$
When $\beta=1 / 2$, the roots are
$\frac{5}{2}-\frac{1}{2}, \frac{5}{2}, \frac{5}{2}+\frac{1}{2}$, or $2, \frac{5}{2}, 3$

When $\beta=-\frac{1}{2}$, the roots are $3,5 / 22$.
It is easily to check that these are roots of (1).
17. A young child is flying a kite which is at height of 50 m . The wind is carrying the kite horizontally away from the child at a speed of $6.5 \mathrm{~m} / \mathrm{s}$. How fast must the kite string be let out when the string is 130 m ?

Solution : Let h be the horizontal distance of the kite from the point directly over the child's head 5. Let l be the length of kite string from the child to the kite at time t. [See Fig. 1] Then

$$
l^{2}=h^{2}+50^{2}
$$

Differentiating both the sides with respect to t, we get
$2 l \frac{d l}{d t}=2 h \frac{d h}{d t}$ or $l \frac{d l}{d t}=h \frac{d h}{d t}$.
We are given $\frac{d h}{d t}=6.5 \mathrm{~m} / \mathrm{s}$. We are interested to find $d l / d t$ when $l=130$. But when $l=130, h^{2}=l^{2}-50^{2}=130^{2}-50^{2}=14400$ or $h=120$.

Thus, $\frac{d l}{d t}=\frac{120}{130} \times 6.5=5 \mathrm{~m} / \mathrm{s}$.
This shows that the string should be let out at a rate of $6 \mathrm{~m} / \mathrm{s}$.
18. Using first derivative test, find the local maxima and minima of the function

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-12 x \tag{4Marks}
\end{equation*}
$$

(i) $f(x)=x^{3}-12 x$

Differentiating w.r.t. x, we get

$$
f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)=2(x-2)(x+2)
$$

Setting $f^{\prime}(x)=0$, we obtain $x=2,-2$ Thus, $x=-2$, and $x=2$ are the only critical numbers of f. Fig. 35 shows the sign of derivative f^{\prime} in three intervals.

From figure 35 it is clear that if $x<-2, f^{\prime}(x)>0$; if $-2<x<2, f^{\prime}(x)<0$ and if $x>2, f^{\prime}(x)>0$.

Using the first derivative test, we conclude that
$f(x)$ has a local maximum at $x=-2$ and a local minimum at $x=2$.
Now, $f(-2)=(-2)^{3}-12(-2)=-8+24=16$ is the value of local maximum at $x=-2$ and $f(2)=2^{3}-12(2)=8-24=-16$ is the value of the local minimum at $x=2$.
19. Evaluate the integral $\mathrm{I}=\int \frac{x^{2}}{(x+1)^{3}} \mathrm{dx}$

Solution : To evaluate an integral of the form

$$
\int \frac{P(x)}{(a+b x)^{r}} d x, \text { we put } a+b x=t
$$

So, we put $x+1=t \Rightarrow d x=d t$

$$
\begin{aligned}
\text { and } \mathrm{I} & =\int \frac{(t+1)^{2}}{t^{3}} d t=\int \frac{t^{2}+2 t+1}{t^{3}} d t \\
& =\int\left(\frac{1}{t}-2 t^{-2}+t^{-3}\right) d t \\
& =\log |t|-\frac{2 t^{-1}}{-1}+\frac{t^{-2}}{-2}+c \\
& =\log |t|+\frac{2}{t}-\frac{1}{2 t^{2}}+c \\
& =\log |x+1|-\frac{2}{x+1}+\frac{1}{2(x+1)^{2}}+c
\end{aligned}
$$

20. Find the length of the curve $\mathrm{y}=3+\frac{x}{2}$ from $(0,3)$ to $(2,4)$.

We have

$$
\frac{d y}{d x}=\frac{1}{2}
$$

Required length

$=\int_{0}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
$=\int_{0}^{2} \sqrt{1+\frac{1}{4}} d x=\frac{\sqrt{5}}{2} \int_{0}^{2} d x=\frac{\sqrt{5}}{2} \quad x_{0}^{2}=\sqrt{5}$ units

